
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Transferability of regionalization methods under changing climate
Xue Yanga, Jan Magnussonb, Chong-Yu Xua,⁎

a Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, N-0316 Oslo, Norway
bNorwegian Water Resources and Energy Directorate, Oslo, Norway

A R T I C L E I N F O

This manuscript was handled by Andras
Bardossy, Editor-in-Chief, with the assistance of
Roger Moussa, Associate Editor

Keywords:
Regionalization methods
Ungauged basins
Climate change
Uncertainty
Variance decomposition

A B S T R A C T

Regionalization methods have been extensively discussed as the solution for runoff predictions in ungauged
basins (PUB), especially during the PUB decade (2003–2012). At the same time, research topics relevant to
climate change appear to be an essential and attractive field for hydrologists in recent decades, because the
availability and quality of water resources are strongly affected by climate change. However, it is still unknown
whether regionalization methods can be used to predict hydrological impacts of climate change for ungauged
catchments or how much uncertainty of future predictions may result from the use of regionalization methods.
Therefore, in this study, we investigate the transferability of regionalization methods (i.e. spatial proximity and
physical similarity methods, regression method) under changing climate conditions and compare the uncertainty
resulting from regionalization methods with that from using climate models. The investigation is based on 108
catchments in Norway, with large variability in climate conditions and geographic characteristics. The study
applies a lumped conceptual rainfall-runoff model (WASMOD) with simple structure and six model parameters.
Our result shows that (a) the differences in the predictions by the regionalization methods tend to increase in the
future, (b) the physical similarity method with parameter option (i.e. the model parameters from the physically-
similar donor catchments are first averaged and then used to run the model for the target catchment) shows
higher transferability than other methods, (c) the uncertainty contributions from climate models and re-
gionalization methods to future runoff prediction are basin dependent, and (d) the uncertainty of future runoff
prediction due to regionalization methods can be higher than that from climate models in low precipitation
areas. This study provides insight to the choice of regionalization methods under changing climate conditions
and the role of regionalization methods to the uncertainty contributions in future runoff predictions.

1. Introduction

From economic, social and environmental perspectives, runoff
predictions have significant influence on the engineering design and
sustainable water management. Using hydrological models is the most
popular solution to this problem by hydrologists and water managers.
For runoff prediction of gauged basins, the models are typically cali-
brated to get the optimized parameter set by comparing the simulated
result with the observed runoff, and then, applying the optimised model
parameter set to predict the runoff for the future period. If the catch-
ments lack observed runoff data, i.e. ungauged basins, hydrological
models cannot be calibrated anymore and the model parameters are
unknown (He et al., 2011; Oudin et al., 2010). Since the majority of
basins worldwide are effectively ungauged, predictions in such basins
become an interesting but challenging topic for hydrologists (e.g. Merz
and Blöschl, 2004; Oudin et al., 2008; Parajka et al., 2007; Sivapalan
et al., 2003; Xu, 2003; Young, 2006; Brugan and Aksoy, 2018). Taking

these problems into consideration, the International Association of
Hydrological Sciences (IAHS) was motivated to establish a “Decade on
Predictions in Ungauged Basins (PUB): 2003–2012”, which was aiming
to improve hydrological predictions in ungauged basins.

During the PUB Decade, many new methods were developed for
runoff predictions in ungauged basins (e.g. Xu, 2003; Merz and Blöschl,
2004; Young, 2006; Parajka et al., 2007; Yang et al., 2018a). According
to the review report from IAHS after the PUB decade, the most common
method to solve the PUB problem is the use of so-called regionalization
methods (Hrachowitz et al., 2013). Researchers applied and compared
regionalization methods in different regions using different models. The
conclusions about which approach performed best differ between the
studies and depend on, among other factors, the study area and model
choice (e.g. He et al., 2011; Oudin et al., 2008; Parajka et al., 2005;
Razavi and Coulibaly, 2013; Reichl et al., 2009; Salinas et al., 2013;
Samuel et al., 2011; Viglione et al., 2013). For example, Parajka et al.
(2005) used the semi-distributed HBV (Hydrologiska Byråns
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Vattenbalansavdelning) model in Austria and showed that the physical
similarity method produced better results than regression and spatial
proximity methods. Oudin et al. (2008) used 913 catchments in France
and concluded that spatial proximity yielded the highest accuracy,
followed by physical similarity, and then regression methods. Applying
regionalization methods in high latitude regions, Yang et al. (2018a)
reported that the physical similarity methods perform best followed by
spatial proximity methods and regression methods produce the worst
simulations based on more than 100 catchments in Norway. The poorer
performance of the regression methods in these studies may relate to
the assumption of a linear relationship between catchment descriptors
and model parameters, which might not be valid in their cases. How-
ever, Young (2006), using 260 catchments from the UK, concluded that
the regression method performed better than the proximity method
based on a single physiographically nearest donor catchment. All these
studies show different outcomes and there is no consistent conclusion
about which regionalization method performs best. To address this
problem, Parajka et al. (2013) made a second comparison of re-
gionalization methods based on 34 studies reported in the literature
involving 3874 catchments. Their statistical result shows that spatial
proximity and physical similarity methods overall perform better than
the regression method.

Studies evaluating regionalization methods have so far been using
data for periods too short to show a pronounced influence by global
warming. However, climate conditions are changing or are becoming
non-stationary (IPCC, 2014), and under non-stationary climate condi-
tions, the reliability of transferring the conclusions or patterns needs to
be investigated (e.g. Broderick et al., 2016; Li et al., 2012). The

simulation of hydrological consequences to climate change has received
increasing attention from the hydrology communities, which usually
consists of three related fields, i.e. (a) use general circulation models
(GCMs) to provide future global climate scenarios, (b) use downscaling
techniques (both nested regional climate models, and statistical
methods) for “downscaling” the GCM output to the scales compatible
with hydrological models, and (c) use hydrological models to simulate
the effects of climate change on hydrological regimes at various scales.
Progress and uncertainty involved in each field has been evaluated and
reported extensively in the literature (e.g. Broderick et al., 2016; Chen
et al., 2011; Etter et al., 2017; Xu, 1999a; Xu et al., 2005). To the future
runoff prediction in ungauged catchments, regionalization methods are
almost equally essential as hydrological models, global/regional cli-
mate models and statistical downscaling methods. However, the
transferability of regionalization methods under climate change has not
achieved similar attention. We are unaware of any studies that has
evaluated how well different regionalization methods perform under
different climate conditions, which motivates our study.

Therefore, the main objectives of this study are to (a) evaluate the
transferability of regionalization methods for climate change impact
assessments and, (b) compare the uncertainty contribution in the runoff
predictions stemming from the choice of regionalization methods and
the choice of climate models. To fulfil those study aims, we focus on the
following specific research questions: (i) How much will the runoff
projections for the future period differ from the past period by re-
gionalization methods? (ii) Will the regionalization method that per-
formed best for the past period also show the best performance for the
future period? (iii) How much uncertainty stems from the

Fig. 1. Overview of the 108 catchments used in this study: (a) average catchment elevation above sea level, (b) yearly average precipitation; (c) yearly average
temperature; (d) seasonal variations in precipitation; (e) seasonal variations in temperature. The climate characteristics are computed using data for the period from
1976 to 2005.
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regionalization methods when projecting runoff for the future period
compared to other factors, such as the uncertainty given by the climate
models? To answer the research questions stated above, we assessed the
transferability of five commonly used regionalization methods using a
lumped conceptual hydrological model, forcing by bias-corrected data
from five climate models during past period (1976–2005) and future
period (2071–2100). For comparing the uncertainty contributions given
by the climate models and regionalization methods, the regionalized
runoff predictions during 2071–2100 are analysed for 108 evenly dis-
tributed catchments throughout Norway.

2. Study area and data

2.1. Study area

This study was conducted using data for 108 independent (i.e. not
nested) and evenly distributed catchments in Norway, one of Europe's
most mountainous countries located on the Scandinavian Peninsula.
Due to the mountainous terrain and large latitudinal extension
(Vormoor et al., 2016), the variation in mean elevation of the catch-
ments is large (80–1500m) (see Fig. 1a) and the hydro-climatological
conditions differ much (see Fig. 1b to e). High pressure systems and
extratropical cyclones dominate precipitation patterns, along with
orographic lifting. Variations in latitude and altitude determine tem-
perature patterns in the study region. The average annual precipitation
over the 108 catchments is approximately 1950mm, with a strong
decrease from coastal to interior areas (see Fig. 1b). Three example
catchments, which are marked on Fig. 1b and 1c by black circles, are
selected to show the typical seasonal climate conditions for their re-
gions. The south-western catchment located close to the coast shows
much higher precipitation amounts, in particular from September to
May, than the northern and south-eastern basins (see Fig. 1d). For air
temperature, the largest difference between the catchments occurs in
the period from October to March. In this period, the catchment located
in the south-eastern inland region shows the lowest temperature, even
lower than the northern basin located close to the coast. In summary,
the climate in coastal area is wetter and maritime and changes to drier
conditions in the interior regions.

2.2. Data

2.2.1. Observed hydrological and meteorological data
The precipitation and temperature data for each catchment was

acquired from grid dataset with a resolution of 1 km retrieved from the
SeNorge dataset by the Norwegian Meteorological Institute (Tveito
et al., 2005; Mohr, 2009; Jansson et al., 2007). The discharge data are
selected from the hydrometric observation network of the Norwegian
Water Resources and Energy Directorate (NVE).

Catchment descriptors are applied to quantify the catchment simi-
larity index in physical similarity methods or build the relationship
with model parameters for regression methods in this study. The
catchment descriptors used in this study are similar as those presented
in Yang et al. (2018a). Table 1 shows a selection of indices from terrain
characteristics and land use.

2.2.2. Climate model data
Typically, bias-corrected climate model data are used for impact

studies (Hewitson et al., 2014). The importance of using bias-corrected
data for hydrological modelling studies has been described in the spe-
cial report of the IPCC (Seneviratne et al., 2012). The main reason for
using bias-corrected data is that the raw simulation data from climate
models often contain large systematic errors, which are much reduced
by the bias-correction step (e.g. Teutschbein and Seibert, 2010, 2013).

In this study, the data we used for each catchment is from bias-
corrected and downscaled climate model data with a spatial resolution
of 1 km available for the periods 1976–2005 and 2071–2100. For the

hydrological model simulations, we use monthly precipitation and
temperature data. Detailed information about the datasets as well as the
downscaling and bias-correction procedures is available in the report
“Climate in Norway 2100” (Hanssen-Bauer et al., 2017). In this study,
we use data from (a) five global climate models (see Table 2), (b) one
regional climate model RCA4 (Kupiainen et al., 2014), and (c) one re-
presentative concentration pathway - RCP 8.5.

Fig. 2 shows a comparison between the bias-corrected climate
model data and the SeNorge dataset (see Section 2.2.1). For the past
period, the bias-corrected climate model results agree well with the
observations, and there is almost no difference between the climate
models and the observations for both precipitation and temperature due
to the bias-correction step. For the future period, on the other hand, the
data from climate models differ more between each other. The median
increase in air temperature is approximately 5 °C and precipitation in-
creases with approximately 21% from the past to the future period.

As climate affects the basic components of hydrologic cycle such as
soil moisture, evaporation and atmospheric water content (Gleick,
1986; Jiang et al., 2007; Yang et al., 2018b), the climate characteristics
are often included in regionalization methods (e.g. He et al., 2011;
Oudin et al., 2008). The climate indices applied are the same as those
presented in Yang et al. (2018a) except that they are calculated from
bias-corrected climate model data used in this study. Table 2 sum-
marised the climate indices calculated from 108 catchments for all five
climate models for both past and future periods.

3. Methods

3.1. Hydrological model

3.1.1. Model description
Conceptual rainfall-runoff models are commonly used for research

on regionalization methods (e.g. He et al., 2011; Oudin et al., 2008;
Parajka et al., 2005; Reichl et al., 2009; Samuel et al., 2011). However,
models with higher complexity and more parameters will likely be
more influenced by over-parameterization and equifinality problems
(e.g. Li et al., 2009; Merz and Blöschl, 2004; Schoups et al., 2008;
Seibert, 1999; Wagener et al., 2007), and the results might therefore
lose generality. Thus, a model with few parameters that are physically
relevant and statistically independent should be an advantage (Yang
et al., 2018a). Considering these criteria, we selected a lumped con-
ceptual rainfall-runoff model called WASMOD (Water And Snow bal-
ance MODeling system). Presented by Xu et al. (1996) and Xu (2002),
WASMOD only has six parameters in total including the snow module
and the model parameters are validated to be typically independent and
statistically significant after calibration (Xu, 2001, 2003). The model
equations are shown in Table 3. Because of the simple structure and few
model parameters, the model has been used and validated in many
different climate regions in the world (e.g. Li et al., 2015, 2013; Widén-
Nilsson et al., 2007; Xu and Halldin, 1997; Xu and Singh, 2002). Ad-
ditionally, the model has also been applied in different regionalization

Table 1
Catchment descriptors for the 108 watersheds used in this study.

Mean Median Maximum Minimum

Area (km2) 301 137 5620 2.84

Terrain characteristics
Mean slope (°) 10.60 9.00 26.00 2.00
Mean elevation (m) 680 621 1472 83

Land use
Urban (%) 0.42 0.00 8.01 0.00
Agriculture (%) 3.92 0.90 57.56 0.00
Forest (%) 85.01 88.78 100.00 34.80
Wetland (%) 7.17 2.28 41.58 00
Waterbody (%) 3.48 2.55 15.05 0.00
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studies (Xu, 1999b; Xu, 2003; Muller-Wohlfeil et al., 2003; Yang et al.,
2018a) and climate change studies (Xu, 1999c; Li et al., 2015).

Table 4 shows the parameter ranges used for the calibration of
WASMOD. The parameters a1 and a2 are two temperature threshold
parameters used in snow routine. Parameter a3 is used for the compu-
tation of potential evapotranspiration. Parameter a4 determines the
value of actual evapotranspiration, which is related to potential eva-
potranspiration and available water. Parameters a5 and a6 influence the
generation of streamflow, where a5 influences base flow and a6 the fast
flow. The base flow parameter should be higher in forested areas than
in open areas or sandy soil, and the fast flow parameter should increase
with the degree of urbanization, average basin slope, and drainage
density (Xu, 2002).

3.1.2. Model calibration and evaluation
As most of the model parameters cannot be directly determined

from field measurement, model calibration is an essential process for
parameter estimation by optimising an objective function. A traditional
split-sample test was conducted for model evaluation, aiming to test the
model validity in different periods (Coron et al., 2012; Wang et al.,
2017) In our study, we divided the observation period from 1976 to
2005 into two distinct periods: 1976–1990 and 1991–2005. Both per-
iods are used for calibration and validation in turn. For the period of
1976–1990, the yearly mean precipitation is approximately 1885mm
and the yearly mean air temperature is 0.94 °C. Precipitation equals
approximately 2000mm and temperature is 1.94 °C in the period
1991–2005. Thus, temperature has increased by approximately 1 °C and
precipitation has increased by about 6% from the first to the second
period.

In this study, the model parameters are optimised to maximise the
NSE-bias objective function (Viney et al., 2009), which is a weighted
combination of Nash and Sutcliffe efficiency (Nash and Sutcliffe, 1970)
and a logarithmic function of bias given by:

= +F NSE 5 |ln(1 Pbias)|2.5 (1)

where Pbias is the bias and NSE denotes the Nash–Sutcliffe efficiency,
which are shown in Eqs. (2) and (3), respectively. Eq. (1) can effectively
maximise NSE while at the same time minimize the bias (Vaze et al.,
2010).

=Pbias 100 Q¯ Q ¯
Q ¯

sim reference

reference (2)

where Qreference represents the observed runoff and Qsim represents the
simulated runoff.

=NSE 1
(Q Q )

(Q Q ¯ )
sim reference

2

reference reference
2 (3)

NSE ranges between −∞ and 1.0, where a value equals to one
indicates a perfect model fit, and values smaller than zero indicate that
the mean observed value is a better predictor than the simulated value.

For model calibration, we first used a Monte-Carlo method to find
the best range of model parameters and then used a local search algo-
rithm (Lagarias et al., 1998) to refine the result. For the Monte-Carlo
step, we used 10,000 sets of parameters randomly sampled according to
the ranges defined in Table 4. For model evaluation, we applied NSE
and Pbias as criteria, since they can assess the simulation from different
aspects. Following Moriasi et al. (2007), we classify model performance
into four categories using the limits shown in Table 5.

3.2. Description of regionalization methods

Information from gauged basin, so-called donor catchments, are
often used for predicting runoff in ungauged basins (Kleeberg, 1992;
Blöschl and Sivapalan, 1995; Petroselli et al., 2018). Regionalization
methods can help to select the best donor catchments for one particular
ungauged target catchment. The regionalization methods evaluated inTa
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this study include: (a) spatial proximity method based on geographical
distance; (b) physical similarity method based on catchment char-
acteristics similarity; and (c) Principal Component Regression (PCR)
method.

Spatial proximity and physical similarity methods are regarded as

distance-based regionalization methods by He et al. (2011) for trans-
ferring parameter information from donor to target catchments. In a
previous study, three donor catchments produced the best performance
of the distance-based regionalization methods for our study area (Yang
et al., 2018a). We therefore use the same number of donor catchments
in this study. Additionally, we applied two different approaches for
using the regionalized model parameters in the hydrological model: the
so-called parameter option and output option (Oudin et al., 2008; Yang
et al., 2018a). For parameter option approach, the model parameters
from the donor catchments are first averaged and then used to run the
model for the target catchment. While, in the output option, the model
is first run using the parameters from the donor catchments on the
target catchment and the outputs from the model are then averaged. In
total, four distance-based methods are applied in this study: (a) the
spatial proximity method with parameter option (SP-par); (b) the spa-
tial proximity method with output option (SP-out); (c) the physical si-
milarity method with parameter option (Phy-par); and (d) the physical
similarity method with output option (Phy-out).

Unlike the distance-based regionalization methods, for the regres-
sion methods the regression equations are transferred to target catch-
ment. These equations are established by regression methods between
the calibrated parameters of the hydrological model (dependent vari-
ables) and catchment descriptors (independent variables) in gauged

Fig. 2. Precipitation and temperature comparison over 108 catchments. The SeNorge dataset is denoted by black, the climate data for the past period by blue, and for
the future period by red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Principal equations of the WASMOD.

Variables Equations

Snowfall (mm/month) = +S P exp T a a a{1 [ ( )/( )] }t t a 1 1 2 2

Rainfall (mm/month) =r P St t t
Rainfall (mm/month) = +SP SP S mt t t t1
Snowpack (mm) = +m SP exp T a a a{1 [ ( )/( )] }t t a 1 1 2 2

Potential evap. (mm/month) = +ep a T( )t a3 2

Actual evap. (mm/month) =e w a ep epmin( (1 exp( ), )t t t t4
Available water (mm/month) = + +w r smt t t 1
Slow flow (mm/month) = +b a sm( )t t5 1 2

Available storage (mm) =+sm max sm( , 0)t t1 1
Fast flow equation (mm/month) = +f a sm m n( ) ( )t t t t6 1 0.5

Active rainfall (mm/month) =n r ep e(1 )t t t
rt ept( / )

Total computed runoff (mm/
month)

= +d b ft t t

Water balance equation (mm) = + +sm sm r m e dt t t t t t1

Where, Pt – monthly precipitation (mm/month); Ta – air temperature (°C/
month); t – time; ai are model parameters, =i 1, 2, ,6.

Table 4
Parameter ranges for WASMOD.

Parameter a1 a2 a3 a4 a5 a6

Range [0 5] [−5 0] [0 2] [0 1] [0 0.001] [0 1]

Table 5
Classification of model performance into categories with limits following
Moriasi et al. (2007) for Pbias and NSE.

Criteria Performance class

Very good Good Satisfactory Unsatisfactory

NSE (-) > 0.75 0.65–0.75 0.55–0.65 < 0.55
|Pbias| (%) < 10 10–15 15–25 >25
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catchments (Yang et al., 2018a). In this study, principal component
regression (PCR) method is applied, which is a combination of principal
component analysis (PCA) with multiple regression methods. According
to the PCA statistical procedure, a set of observations of possibly cor-
related variables is converted into a set of linearly uncorrelated vari-
ables (called principal components) by orthogonal transformations.
Based on these new principal components, a multiple regression
method is used to determine the function between model parameters
and selected catchment descriptors in gauged donor catchments. Fi-
nally, these functions are applied in ungauged locations to estimate the
model parameters, which will be used in the hydrological model to
predict the streamflow.

For details about the methods used in this study, see Yang et al.
(2018a). The catchment descriptors for physical similarity and regres-
sion methods have been summarized in Tables 1 and 2.

3.3. Evaluating the transferability of regionalization methods

3.3.1. Performance of regionalization methods
We determine the performance of the regionalization methods using

leave-one-out cross-validation, which is a commonly used strategy in
many regionalization studies (e.g. Oudin et al., 2008; Parajka et al.,
2013; Samuel et al., 2011). For each station, we compute the perfor-
mance of each regionalization method using a so-called reference si-
mulation since there is no observed runoff available for the future
period. For the reference simulation, we use a model simulation ap-
plying the parameters obtained directly from the local calibration (see
defined in Table 5), i.e. not involving any regionalization methods and
drive the model with the bias-corrected climate data for all runoff si-
mulations for both the past and future period (see Section 2.2.2). Our
reference simulation follows a very typical approach for assessing cli-
mate change impacts on runoff (e.g. Chiew et al., 2009; Niemann and
Eltahir, 2005; Xu, 1999c; Zheng et al., 2009; Guo et al., 2018). This
method assumes that hydrological models calibrated for the historical
period are also valid for use in the future period with possibly different
climate conditions (Vaze et al., 2010). Following this assumption, we
use the reference simulation to judge which regionalization method
provides the best prediction of runoff for the future period. We compute
the performance of the regionalization methods using the NSE and
Pbias measures presented in Section 3.1.2.

3.3.2. Transferability of regionalization methods
Once we have determined the performance of regionalization

methods, we test how sensitive the long-term runoff predictions in
ungauged basins is to the choice of regionalization methods. The sen-
sitivity is measured as the change in performance of the regionalization
methods from the past (1976–2005) to the future (2071–2100) period.
Since NSE and Pbias evaluates the agreement between the regionalized
and reference simulation from different aspects, we need an ad-
ditionally simple but comprehensive index to rank regionalization
methods. The proposed ranking index (RI) is based on the probability of
good performance (as described in Section 3.1.2) as:

= +
=

( )RI
m

f d f d1 0.5 0.5i
k

m

NSEik NSE Pbiasik Pbias
1

0.65

1

15

15

(4)

where f NSE_ ik and f Pbias_ ik stand for the probability density functions
of NSE and Pbias for regionalization method i and climate model k. As
mentioned before, we applied five regionalization methods and five
climate models, thus = =m k i5, and 1, 2, 3, 4, 5. Since the ranking
index is based on probability of good performance, higher values in-
dicate better performance within each period and the optimal value is
1.

In summary, we evaluate the transferability of the regionalization
methods using three different performance criteria. A small change in
performance of the regionalization method from the past to the future

period indicates a good transferability capacity of the method for dif-
ferent climate conditions.

3.4. Quantifying the uncertainty contributions from climate models and
regionalization methods

The uncertainty in predictions of hydrological impact of climate
change by hydrological models stems from different sources, such as
model parameters, input data, climate models and hydrological model
structural (e.g. Meresa and Romanowicz, 2017, Wine et al., 2018; He
et al., 2018). The assessment of uncertainty contributions can help
managers of water resources to understand the projections in more
depth, and make better decisions than when this information is ne-
glected (Winkler, 2016). For the uncertainty analysis presented below,
we applied data from all five climate models presented in Section 2.2.2
and the five regionalization methods outlined in Section 3.2. We
quantify the uncertainties stemming from climate models and re-
gionalization methods for yearly average runoff over 2071–2100 for all
108 study catchments.

We use variance decomposition to compute the contributions to the
total uncertainty from the climate models and regionalization methods.
In this study, we follow the approach described in Déqué et al. (2007,
2012). The total variance of runoff Vtotal, can be splitted into the three
different contributions as:

= + +V V V Vtotal climate regionalization interaction (5)

where Vclimate and Vregionalization are the individual parts of the variance
explained by the climate models and regionalization methods, respec-
tively. Vinteraction is the variance due to the interaction between climate
models and regionalization methods. Statistically, interaction effects
occur when the effect of one factor depends on the levels of the second
factor. In our case, this can occur when the response of the re-
gionalization methods depends on the selection of climate models. The
variances in Eq. (5) can be computed as:

=
=

V 1
5

(R̄ R̄)climate i 1

5
i.

2
(6)

=
=

V 1
5

(R̄ R̄)regionalization j 1

5
.j

2
(7)

= +
=

=
V 1

5
1
5

(R R̄ R̄ R̄)interaction i 1

5

j 1

5

ij i. .j
2

(8)

where Rij is runoff simulation from climate model i and regionalization
method j. R̄ represents the yearly average runoff simulation of all
samples. R̄i. and R̄.j are the average runoffs with respect to climate
model i and regionalization method j. For more details, see Déqué et al.
(2007, 2012).

4. Results

4.1. Evaluation of model performance by split-sample test

Fig. 3 shows the performance of WASMOD using a split-sample
experiment. The median NSE value for the calibration period
1976–1990 is 0.86 and the 25% quantile value is approximately 0.8,
which means that the model performance is higher than 0.8 for 75% of
the catchments. For the validation period 1991–2005, the median NSE
value is 0.75 and the 25% quantile value is around 0.70. The median
Pbias is close to zero during the calibration period 1976–1990, and for
the validation period, it is approximately −6.5%, and the interval be-
tween 75% and 25% quantile increases from 4 to 12%. When cali-
brating the model for the period 1991–2005, the model results are al-
most unbiased with an NSE value approximately equals to 0.84. For the
validation period 1976–1990, the median NSE value is 0.78 and the
bias is 3.0%. In addition, from the calibration to validation period, the
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50% interquartile range (the interval between the 75% and 25% in-
terquartile values) increases from 0.08 to 0.14 for NSE and from ap-
proximately 3% to 18% for the Pbias. According to the suggested per-
formance classification by Moriasi et al. (2007), the model performance
can be considered as very good for calibration and good for validation.

Fig. 4a shows a map with model performance for the calibration
period 1976–1990. The catchments with highest performance (NSE
greater than 0.85) are mainly located in the interior area rather than
the coastal regions. There are more than 50% catchments with NSE
values larger than 0.85. For the validation period 1991–2005, the
model performance generally decreased (Fig. 4b). Many stations with

poorer performance are located along the coast, whereas catchments
with higher performance are often situated inland. For the validation
period, about half of the catchments show NSE values higher than 0.75,
and 8 catchments show NSE values higher than 0.85.

4.2. Transferability evaluation of regionalization methods

4.2.1. Visual difference between regionalization methods in different
climates

All climate models show increased temperature and precipitation in
the future compared to the past period (see Section 2.2.2). To illustrate

Fig. 3. Split-sample test showing the model performance of WASMOD for all 108 study catchments.

Fig. 4. Map showing the performance of WASMOD: (a) NSE values for the calibration period 1976–1990; (b) NSE values for the validation period 1991–2005.
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how this change in climate influences the runoff simulations, we show
the difference, in terms of cumulative distribution functions, between
the regionalized and reference simulations for the past (1976–2005)
and future period (2071–2100) in Fig. 5. The results are calculated
based on the 30-year averaged monthly runoff for the 108 study
catchments, and using the EC-EARTH-RCA4 climate model, whose
precipitation and temperature data are closest to the ensemble mean
spanned by the five individual models.

Comparing Fig. 5a and b, we first see that the absolute difference
between the regionalized and reference runoffs shows a large increase
from past to future period for all regionalization methods. For instance,
the maximum absolute difference in runoff between the regionalized
and reference simulation is around 30mm/month for the past period,
but has increased to about 55mm/month for the future period. The
largest increase occurs for the spatial proximity methods. Second, the
difference between the regionalization methods themselves tends to
increase in the future compared to the past period (i.e. the range be-
tween the methods increases). Therefore, we conclude that the re-
gionalized simulations will differ more between each other for the fu-
ture period, which indicates that the selection of regionalization
method will largely influence the accuracy of runoff predictions in
ungauged basins.

4.2.2. Evaluation of regionalization methods by Nash-Sutcliffe values
Fig. 6 shows the probability density functions (PDF) of NSE values

for the five regionalization methods and five climate models during
both periods. First, all regionalization methods perform worse in the
future than in the past period. For instance, the mode value of NSE
decreased and the probability density of high NSE values dropped from
the past to future period based on data from all five climate models.
Second, the decrease in performance varies between the regionalization
methods and climate models. Third, by using different climate models,
the differences of regionalization method performances are not sub-
stantial, which can be seen from median of NSE values over 108
catchments for each regionalization method (see right panel in Fig. 6).
Thus, we conclude that the different climate models have small influ-
ence on the performance of the regionalization methods. Finally, among
all regionalization methods, the Phy-par method performed best during
both periods for all climate models (compare the PDF curves in the
third panel from the left and the median NSE values in the right panel of
Fig. 6).

4.2.3. Evaluation of regionalization methods by Pbias values
Fig. 7 shows probability density functions (PDF) of the simulated

percentage bias (Pbias) for the different regionalization methods and
climate models for the 108 study catchments. Foremost, the probability
density curves change from narrow in the past to wide in the future
period for all regionalization methods. This pattern indicates that there
are more catchments with higher errors in the future simulations than
in the past period, which can also see from the standard deviation of
Pbias values increases between the two periods (right panel in Fig. 7).
This result is consistent with the results presented in Fig. 6 where NSE
was used as performance criterion. The different climate models have a
small influence on the performance of the individual regionalization
methods (compare the rows in Fig. 7 for each regionalization method).
Typically, the shapes of the PDFs for the future period are similar be-
tween the climate models for each regionalization method. Further-
more, the difference in mode values between the two periods is always
smaller than 5%, which also suggests that the choice of climate model
has small influence on the regionalization performance in terms of
Pbias. When comparing the different regionalization methods, we find
that the Phy-par method shows the smallest change in mode value
between two periods (see third column from the left and the right panel
in Fig. 7). At the same time, this method also shows lowest standard
deviation of Pbias for the future period (see right panel in Fig. 7). Thus,
the Phy-par method seems best suited for projections of average runoff.

In the following, we examine how the Pbias in the past period re-
lates to the Pbias in the future period. Fig. 8 shows the Pbias in mod-
elled runoff by the five regionalization methods from the past to the
future period using data from EC-EARTH-RCA4. Overall, there is a
strong positive correlation between the Pbias for the past and future
period. Thus, biases given by the regionalization methods will likely
persist from the past to future period. Moreover, the value of the Pbias
for the past period is generally smaller than for the future period. For
example, the Pbias by SP-par method varies within a range from−25 to
15% for the past period, but the spread increases to a range from −45
to 35% for the future period. In this case, the uncertainty in simulated
mean annual runoff due to the regionalization methods increases from
the past to the future period. Comparing the methods in both periods,
the physical similarity approaches show similar spread in both periods,
whereas the other methods display larger differences (compare with
results presented in Section 4.2.3).

Fig. 5. Absolute difference in monthly mean runoff between the regionalized and reference simulations for the past (panel a) and future (panel b) period for the five
regionalization methods. The figure shows these differences as a cumulative distribution function for the 108 study catchments.

X. Yang et al. Journal of Hydrology 568 (2019) 67–81

74



Fig. 6. Probability density functions (PDF) showing NSE values from five regionalization methods and five climate models for the past (1976–2005) and future
(2071–2100) period. Each PDF contains data from the 108 study catchments. The grey vertical lines show the mode for each distribution. The right panel shows the
median of the NSE values from the 108 catchments for the different regionalization methods for both periods.

Fig. 7. Probability density functions (PDF) showing Pbias values from five regionalization methods and five climate models for the past (1976–2005) and future
(2071–2100) period. Each PDF contains data from the 108 study catchments. The grey vertical lines show the mode for each distribution. The right panel shows the
standard deviation of the Pbias values from the 108 study catchments for the different regionalization methods for both periods.
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4.2.4. Evaluation of regionalization methods by ranking index
Table 6 shows the ranking of the regionalization methods using the

index (RI) proposed in Section 3.3.2. As the evaluation criterion is
probability-based higher values mean better performance than lower
values. First, the probability of being good performance for all re-
gionalization methods in the future is lower than in the past period,
with an average decrease in RI of approximately 9.3%. This result is
consistent with those shown in Figs. 6 and 7, indicating that all re-
gionalization methods will have higher likelihood of producing worse
simulations in the future. Second, the difference in RI between the re-
gionalization methods increases from 7.14% (= (0.939–0.875)/
0.939 * 100) for the past period to 10.8% (= (0.918–0.825)/
0.918 * 100) for the future period. These results are in line with those
presented in Section 4.2.1 (see Fig. 5). Third, when comparing the re-
gionalization methods in the past period, the RI value for SP-par ap-
proach (0.875) is smaller than for all other methods. For the future

period, both spatial proximity methods show lower RI values (less than
0.8) than other methods, where the remaining methods all utilize
catchment descriptors. This result is partly related to the diversity of
catchments characteristics in this study; the spatial proximity methods
do not seem able to capture the large variability in parameter values
through space. Finally, from the transferability aspect, the Phy-par
approach shows the smallest decrease (7.14%) of probability for good
performance from the past to the future period, whereas the SP-out and
Phy-out methods show the largest decreases (higher than 10%). Thus,
we conclude that the physical similarity method with the parameter
option has the best transferability among all. The transferability of re-
gression method (PCR) is moderate when considering all methods.

4.3. Contribution of uncertainty from climate models and regionalization
methods

Fig. 9 shows boxplots of the variance decomposition for the pre-
dicted mean annual runoff for the 108 study catchments. The con-
tribution of the uncertainty from the climate models and regionaliza-
tion methods varies strongly between the catchments (from less than
10% to more than 90%). Overall, the climate models show a larger
contribution to the uncertainty (median variance fraction equals to
51%) compared to the regionalization methods (median variance
fraction equals to 40%). The contribution of the interaction term be-
tween the climate models and regionalization methods is, on the other
hand, of much smaller importance.

Fig. 10 shows a map of the variance decomposition results

Fig. 8. Scatter plots showing the Pbias for the future period against the past period for the 5 different regionalization methods.

Table 6
Performance and ranking of regionalization methods by evaluation criteria RI.

Multiple criterion RI Ranking Decrease of RI (%)

Past Future Past Future

SP-par 0.875 0.793 5 4 9.37
SP-out 0.918 0.722 2 5 10.46
Phy-par 0.939 0.872 1 1 7.14
Phy-out 0.907 0.809 4 3 10.80
PCR 0.918 0.825 2 2 9.04
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displaying the uncertainty contributions from climate models and re-
gionalization methods for the individual catchments. The uncertainty
contributions vary largely between the basins, which is consistent with
other studies (e.g. Mendoza et al., 2016; Sunyer et al., 2015). The re-
gionalization methods typically dominate the uncertainty in most of the
south-eastern catchments, and also in many of the catchments in middle
and northern Norway. For the remaining catchments, the climate
models typically dominate the uncertainty in predicted mean annual
runoff. In almost all catchments, the contribution of the interaction
term between the climate models and regionalization methods is small
with few exceptions. Therefore, we can conclude that, for most

catchments, the mean yearly runoff predictions from regionalization
simulations do not depend on the selection of climate models.

Catchments where the total uncertainty in the runoff predictions is
dominated by the climate models tend to be located in coastal areas,
where precipitation is higher than in the inland regions. Fig. 11a dis-
plays the difference in uncertainty contributions between the climate
models and regionalization methods against yearly mean precipitation
for all study catchments. When precipitation is higher than 3400mm/
year, the climate models give higher uncertainty than the regionaliza-
tion methods. At the same time, the standard deviation in projected
precipitation between the climate models also increases with pre-
cipitation amount (Fig. 11b). Note that both panels use data from all
climate model data during the future period (2071–2100). From the
results in Fig. 11, it can be summarized that, for catchments with high
precipitation amounts or high variability of simulated precipitations
between climate models, the climate models dominate the total un-
certainty of the runoff predictions. However, for catchments with pre-
cipitation lower than 3400mm/year, climate models and regionaliza-
tion methods both can dominate the total uncertainty of the runoff
predictions. Thus, we can conclude that the uncertainty contribution
from regionalization methods is comparable with climate models for
catchments with precipitation amounts lower than 3400mm/year in
our study region.

Fig. 12 shows the normalized variances for climate models and re-
gionalization methods computed using Eqs (6) and (7) for simulated
annual mean runoff. The normalized variance for climate models is
calculated by dividing Vclimate for each catchment by the maximum
value of Vclimate for all catchments (see also Eqs. (6–8)). The same
normalization is performed for the variance of the regionalization
methods. The normalized variances are much higher, often a factor 10
or more, in the coastal areas than the interior regions. In the regions
with high variances, the climate models overall produce higher un-
certainties than the regionalization methods. These regions are char-
acterized by higher precipitation amounts than the interior regions
(compare with Fig. 1), and the differences in projected precipitation by
the climate models dominate over the parameter uncertainty given by
the different regionalization methods. On the contrary, the variances
from both climate models and regionalization methods are considerably
smaller in the interior regions and some northern basins (see also inset
maps in Fig. 12). For many of these catchments the variance given by
the regionalization methods exceeds the variance given by the climate
models. This result may be due to the lower precipitation magnitude
and variability observed in these regions (compare with Fig. 1b and
Fig. 11b). Thus, for areas with low precipitation amounts and varia-
bility, the predicted runoff is more sensitive to variations in model
parameter values given by the different regionalization methods than
small changes in precipitation due to differences between climate
models.

5. Discussion

5.1. Model performance

According to our results, there are more than 50% catchments
whose NSE values are higher than 0.85, which is regarded as very good
according to the classification presented by Moriasi et al. (2007). With a
split-sample test, the model transferability can be assessed under dif-
ferent conditions, including changes in climate (Klemeš, 1986). In our
case, yearly mean precipitation has increased with approximately
115mm and temperature has increased approximately 1 °C from the
period 1976–1990 to 1991–2005. Our split-sample test shows that NSE
values are higher than 0.7 and absolute values of Pbias are lower than
15% for approximately 75% of catchments. These high model perfor-
mances indicate that the model is able to predict changes in runoff
conditions under changing climate conditions. The ability of WASMOD
for simulating runoff for different climate conditions has also been

Fig. 9. Contribution of uncertainty from climate change models and re-
gionalization methods, and their interaction for the 108 study catchments.

Fig. 10. Map showing the fraction of uncertainty given by the climate models
and regionalization methods to yearly average runoff during 2071–2100 for the
108 study catchments.
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validated by Xu (1999c).

5.2. Transferability of regionalization methods under climate change

In this study, we assessed the transferability of five regionalization
methods under climate change. We find that the capacity of the re-
gionalized simulations to match the reference simulation declined from

the past to the future period. This behaviour may partly be explained by
the argument from Petheram et al. (2012), who concluded that the
correlation between catchment descriptors and the model performance
becomes weaker for prediction than calibration mode. In some cases,
our results showed systematic differences for the regionalization
methods between the past and future period. For example, we found a
positive correlation in the percentage bias (Pbias) of simulated runoff

Fig. 11. (a) Scatter plots showing the difference in fraction of uncertainty given by the climate models and regionalization methods versus yearly average pre-
cipitation, and (b) correlation between precipitation amount and its variability. The results presented in this figure are computed using data from all five climate
models during 2071–2100.

Fig. 12. Normalized variances from climate models and regionalization methods for the future (2071–2100) period over the 108 study catchments to the yearly
runoff predictions. The bar height is proportional to the normalized variances ranging from 0 to 1 for the country-wide map, whereas it ranges from 0 to 0.08 for the
two inset maps.
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between the two periods (Fig. 8). According to this result, we can de-
duce that for catchments where the regionalization method over-
estimates runoff for the past period will likely also overestimate runoff
for the future period. This has important implication for the choice of
regionalization method when aiming for accurate predictions of
average future runoff. Moreover, the difference between the runoff si-
mulations obtained by all regionalization methods appears to increase
from the past to the future period. Thus, for predicting runoff for the
future period it is very important to select the methods with lowest
uncertainty. Our results are similar to simulations using different hy-
drological models for gauged basins. Those simulations also tend to be
more similar for the past historical period than the future projection
period (e.g. Jiang et al., 2007).

Each regionalization method performs differently under changed
climate conditions. Using our ranking index, we find that the physical
similarity methods perform better than the spatial proximity methods
for both periods (see Table 6). Here, the spatial proximity methods
performs worse than in other studies (e.g. Oudin et al., 2008), which
may partly be explained by the fact that our network of available donor
catchments has a lower density than in previous studies. The density of
donor catchments is considered as an important factor to impact the
efficiency of spatial proximity methods (Lebecherel et al., 2016). For
the future period, all regionalization methods that utilize catchment
descriptors showed a better match with the reference simulation than
the spatial proximity methods, which only consider distance informa-
tion. From the past to future period, the Phy-par approach shows the
smallest decrease of the ranking index, followed by regression and SP-
par methods, and the largest drops are for SP-out and Phy-out methods.
This result indicates that transferring model parameters as a whole set
(output option) is most sensitive to changes in climate, and therefore
less robust than the remaining methods evaluated.

5.3. Contribution of uncertainty from climate models and regionalization
methods

As mentioned in many studies, future predictions include un-
certainty (e.g. Beven et al., 2010; Koutsoyiannis et al., 2007). In this
study, we quantified the contribution of uncertainty from climate
models, regionalization methods and their interaction for predictions of
runoff. Our analysis, based on data from 108 catchments, shows that
overall the climate models contribute more to the total uncertainty than
the regionalization methods. This result is, to some extent, supported by
earlier studies, which have shown that the uncertainty stemming from
climate models is larger than from the downscaling methods and/or
hydrological models (e.g. Addor et al., 2014; Chen et al., 2011; Etter
et al., 2017; Osuch et al., 2016; Sunyer et al., 2015). The interaction
influence is considerably smaller and can almost be neglected, which
indicates that climate models and regionalization methods work almost
independently from each other for runoff predictions. While, as our
result is based on 108 catchments, the result shows large variability
between the catchments. The climate models contribute most to the
total uncertainty in coastal areas whereas the regionalization methods
dominate the uncertainty in some inland regions. The catchments
where the uncertainty is dominated by climate models show higher
precipitation amounts and variability than for the regions where the
regionalization methods dominate the uncertainty. Furthermore, the
variance map shows that the uncertainty due to climate models shrinks
considerably from the coast to inland, whereas the variance by re-
gionalization methods changes within a relatively narrow range for all
catchments. Thus, the regionalization methods dominate the total un-
certainty in the inland regions because the climate models contribute
considerably less to the uncertainty there than in the coastal regions. In
summary, contribution of climate models to future prediction un-
certainty is related to the precipitation amount and its variability. In
addition, for regions with less precipitation or lower precipitation
variability, the uncertainty from regionalization methods cannot be

neglected and can even be the dominant factor.

6. Conclusions

In this study, we evaluated the transferability of five regionalization
methods for climate change studies using five different climate models.
The regionalization methods were tested against a reference simulation
using locally calibrated parameters. We also analysed whether the re-
gionalization methods or the climate models dominated the total un-
certainty in the predictions. The study was performed using data from
108 catchments in Norway, a seasonally snow-covered region with
mountainous terrain. The main conclusions from the study are sum-
marized in the following points:

– The match between simulations from all regionalization methods
and the reference declined from the past to the future period. While,
the performance in the future is positively correlated to the per-
formance in the past period.

– From past to future period, the physical similarity method with the
parameters averaged from the donor catchments (Phy-par) performs
best, whereas the distance-based methods with output averaging
option (SP-out and Phy-out), are more sensitive to climate change
impact. The difference between the regionalised simulations tends
to increase in the future compared to the past period.

– For the runoff predictions of the future period, the main source of
uncertainty depends on catchment attributes. The climate models
appear to contribute most to the total uncertainty for basins with
high amounts and variability in precipitation, whereas the re-
gionalization methods tend to dominate the uncertainty in catch-
ments with lower amounts and variability in precipitation.
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